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The equations of motion of three-wheeled robots with two drive wheels and one passive caster wheel are derived and investigated. 
The control of longitudinal motion and turns of such a robot is implemented by appropriate control of the independent motors 
of the drive wheels. The research is carried out under the assumption that the robot is moving on a horizontal plane surface and 
that the wheels do not slip. A system of two non-linear equations with two controls is obtained for the non-holonomic system 
considered. The dependence of the phase portrait on the values of the constant controls and parameters of the system, taking 
into account the asymmetry of the robot, is investigated. The results obtained are not only of theoretical but also of practical 
interest. 0 2003 Elsevier Science Ltd. All rights reserved. 

1. THE EQUATIONS OF MOTIONS 

We will assume that the robot is moving on a plane horizontal surface - a polygon. We will introduce 
an absolute system of coordinates C515253 connected with the polygon, the unit vectors k1 and c2 are 
in the horizontal plane, and & is directed along the vertical and forms a right triple with them (Fig. 1). 
We will connect the system of coordinates 0x1x2x3 with the body of the robot in such a way that the 
point 0 is situated on the axis of the drive wheels, the unit vector X3 is parallel to 53, the unit vectors 
X1 and X2 form a right triple with it and the unit vector X1 is directed forward along the body. The 
vector a = aiX, + a2X2 specifies the position of the centre of gravity of the body, b is half the distance 
between the wheels and cp is the course angle of the robot. We will consider the motion of the robot 
using the coupled axes 0x1x2x3 and adopt the hypothesis of non-sliding wheels. Then the absolute velocity 
of the point 0 and the absolute angular velocity of the robot will be written in the form 

v=vx,, 0=0x3 

The fact that the vector of the linear velocity is directed along the xl axis represents a non-integrable 
constraint on the velocity, which corresponds to the definition of a non-holonomic constraint. 

The robot considered, course a third passive caster wheel but, using the fact that usually its influence 
on the character of the motion is small; we will replace it with a slidable strut for simplification. 

We will determine the absolute linear velocities V,, V, and V- of the centre of gravity of the body 
and the centres of the right and left drive wheels. 

v, = (V-a,o)X,+a,coXp, v, = (V+bo)X, 

If oz are the axial angular velocities of the wheels and r is the radius of the wheel, then for the non- 
sliding wheels 
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C 51 
Fig. I 

0* = V,lr = (V + bo)lr (1.1) 

We will introduce the mass mo of the body, the mass m, of the wheel, the central moment of inertia 
of the body JO about the vertical axis and the central axial JIy and equatorial .I”, moments of inertia of 
the wheel. The moments and singular moments about centres of mass of the body and wheels have the 
form 

PO = m,[(V-a,o)X, +qaXJ, K, = JooX, 

0.2) 
P* = m,(V+bo)X1, K, = J;o,X, + J;wX, 

Note that for the plane horizontal motion assumed, the gravity forces of the elements of the robot 
will only appear in the expressions for the vertical components of the forces, which will later be eliminated 
from the equations and hence can be ignored from the beginning. 

We will denote by 
s, = -a,X, - (a*kb)X* (1.3) 

the radius vectors of the centres of the wheels relative to the centre of masses of the body, F, and M, 
are the forces and moments acting on the wheels from the side of the body (the reference points are 
the centres of the wheels), and Qk are the forces acting on the wheels from the side of the polygon at 
the contact points. 

We can now write the equations of motion for each of the three rigid bodies considered by applying 
the fundamental theorems of mechanics 

dP0 dK0 - =-F+-F-, dt = 
dt 

-S+xF+-S-xF_-M+-M- 

dP* - = Qk+FF,, 2 
dt 

= M,-rX3xQ, 

Eliminating F, and M, from the first two equations and putting 

P = P, + P, + P- = [(m, + 2mJV - m,a,o]X, + moa,OX, 

K = K,+K++K- = +‘X,+(J,+2J,)oX, 

we obtain two vector equations 

5 = Q++Q- 
dK dP+ dP- 
dt +s+x-$-+s-x - = (S+-rX,)xQ++(S--rX3)xQ- 

dt 

(1.4) 

(l-5) 
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Now, taking into account the rule of differentiation along moving axes and Eqs (l.l)-(1.3) and 
denoting the time derivative by a dot, we will write the first equation of (1.5) in projections on to the 
x1, x2 axes, the second in a projection on to the xj axis and the last equation of (1.4) for both wheels 
will be written in a projection on to the x2 axis 

. 
(m() + 2mJV - m(p20 - rn@z,O ’ = Q,++Q,- 

m,,a, co’ + (m, + 2m,) Vo - moa202 = Q2+ + Q2.. 

(J, + 25; + 2m,b2)o’ + 2m,a2V’ - 2m,a, Vo = 

= -a1(Q2+ + Q2J + a2(Ql+ + Qd + b(Ql+ - Qd 

r-l JI( V’ f bo’) = M, - rQ,, 

The equations contain two axial control torques M, = M2* applied to the wheels from the side of 
the body. Eliminating the combination Q2+ + Q2- and the reactions QI+ and Q,- in an obvious was we 
arrive at the following system of two non-linear dynamic equations 

m. + 2m, + ‘JL V’ - moa20’ - moa,02 = 
r 

$4, + M-1 

+mga,Vw-moa,a2c02 = ;(M+ - M-) + ff(M+ + M-) 

Suppose the control torques M, and M are formulated as follows, which is a standard way when 
describing drives with direct-current motors: 

M, = clp~- c2@+ 

where cl+ and c2+ are the parameters of the various drives and U+ are the control voltages. 
Taking Eqs (1.1) into the account we have 

bo M++M- = c,~u+~c,-u_-(~,+~C~-);V-(CZ+~~~-)~ 

We will introduce a new variable instead of I/ and also new parameters 

2) = _v. 
b’ e = j$(m,+-jJ;), m = m,(l+e), a = !!!!$!, e _ Tab2 

J= I[J, + 23; + b2mot3 + m,af], 
c2+ + c2- c2+ - c2- 

mb2 
G=-, y=- 

mr2 c2+ + c2- 

P= CI+U+ + c,-u-1, q = -h,+u+ - c,-u-1 mrb 

Equations (1.6) with the new notation (1.7) will become 

u’-eo’-aw2+ou+yoo = p 

(J + 8e2)o’ + auo - eaw2 + oo + YOV + ecTv + eyoo = q + ep 

(l-7) 

WV 

P-9 

The parameters J > 0 and 8 > 0 are determined by the inertial-mass characteristics of the system, 
a, e give the position of the centre of gravity of the body relative to the wheels, o a 0 is the normalized 
viscous friction in the wheel axes, y( 1 yI < 1) is a parameter defining the asymmetry of the friction, and 
p and q are the controls of the longitudinal velocity and the rotation of the body. Below are will assume 
that a > 0, since the reverse situation is equivalent to a change in the sign of the velocity. 
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We will examine the behaviour of the system in the case when the control signalsp and 4 are constant. 
Then system (1.9) is autonomous and the use of the phase plane w, 2) is very convenient for investigating 
the motions for different values of the parameters. 

2. SIMPLE CASES 

For special values of the parameters, Eqs (1.9) transform into the equations of non-holonomic systems, 
considered in the classical publications [l-4]. We will cite these results here. 

Chuplygn’s sledge. When p = 4 = e = o = y = 0 system (1.9) takes the form 

v’-ml* = 0, JW’+avDO = 0 (2.1) 

and is identical with the system obtained and analysed by Chaplygin [l] and Caratheodory [3], who 
examined the inertial motion along the horizontal plane of a “Chaplygin’s sledge”, a non-holonomic 
mechanical system, representing a rigid body resting on the plane with two sliding points and a point 
of the skate blade. The position of the contact point, of the skate coincides here with the centre of the 
section connecting the fixing points of the wheels of the mobile robot. 

The phase plane for the case considered is shown in Fig. 2. The stationary points 00 = 0, u. = const 
of the system (2.1) fill the whole ordinate axis. It is obvious that the motions of the robot with constant 
velocity along a straight lines coincide with these stationary points. System (2.1) has the integral 

v* + Jo* = const 

which defines a family of ellipses (J > 0) - phase trajectories on the o, u plane. For a > 0 the 
representative point moves along the phase trajectory from below upwards; consequently, the stationary 
points u. < 0 are unstable and u. > 0 are stable. Hence the motions of a robot with the centre of gravity 
of the body behind the wheels are unstable, and those with the centre of gravity of the body in front 
of the wheels are stable. The cuspidal point of the trajectory of motion of the robot coincides with the 
intersection of the phase trajectory with the abscissa axia. 

Appell’s mechanism. When q = e = o = y = 0 system (1.9) takes the form 

v’-ao* = p, Jo’+avo = 0 G-9 

these equations are identical with the equations obtained and analysed by Appell[2] and later by Hamel 
[4] for a non-holonomic mechanical system, which differs from “Chaplygin’s sledge” in the fact that, 
instead of a skate, it has a wheel, on which a constant torque acts, produced by means of a load on a 
thread positioned over a fixed block on the top of the body and wound round a pulley coaxial with the 
wheel. 

V 

Fig. 2 
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Fig. 3 

We will present some results from these publications. If p > 0, there are no stationary points; if 
p < 0, we have have two stationary points 

vg = 0, 00 = +.J& 

The autonomous equations (2.2), eliminating the time, can be reduced to the form 

(p/o2 + u)d(02) = -(ulJ)d( v”) 

Equation (2.4) obviously has the integral 

m2 + pln(02) + (alJ)v2 = c 

(2.3) 

(2.4) 

where C is an arbitrary constant. The phase trajectories for the case p < 0 are shown in Fig. 3. The 
stationary points in this case are the centres. It can be seen that the steady motion (2.3) - rotation of 
the body with constant velocity about a fixed point - is realized when the momentp on the wheel balances 
the centrifugal force ao2. 

The case a = 0. When a = 0 Eq. (1.9) has the form 

v’-eo’+ov+yoo = p 

(J + 8e2)o’ + 60 + you + ecrv + eycm = q + ep 
(2.5) 

For constant values of the control parameters p and q, linear system (2.5) has a unique stationary 
point of the stable-node type. 

vo = P-‘14 u. = 4-YP 
a( 1 -y2j a(1 -r2) 

3. STATIONARY SOLUTIONS AND THEIR STABILITY 
FOR CONSTANT CONTROLS 

We will now consider the general case for constant p and q. As was noted previously, without loss of 
generality, we will assume that a > 0. We will make the following changes of variables and introduce 
the notation 

x = aoh, y = au/o, z = a; j=uplo2, (?=uqla2, Z= J+8e2>0 (3.1) 

In this notation system (1.9) takes the form (the prime denotes differentiation with respect to z) 

y’-ex’-x2+y+p ‘j 

S’+xy+(l +ye)x-ex2+(y+e)y = ij+eb 
(3.2) 
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We recall that here the variable x is the normalized angular velocity of the axes connected with the 
body andy is the normalized linear velocity of their origin - the middle point between the wheels. The 
stationary points of system (3.2) are the solutions of the system of algebraic equations 

-x2 + y + yx = P, xy+x+yy = ij (3.3) 

which obviously reduces to the cubic equation 

x3+(Ij+ 1 -y2)x+py-q = 0 

which always has at least one real root. 
Suppose a certain stationary point x0, y. is obtained. We will construct equations in the deviations 

Ax = x-x0, Ay = y-y, (3.4) 

for system (3.2) close to this point. We substitute expressions (3.4) into system (3.2) and, taking into 
account Eqs (3.3), we obtain 

Ay’ + Ay - eAx’ - (2x0 - y)Ax = Ax’ 

SAX’ + ( 1 + y, - 2ex, + p)Ax + (x0 + e + y)Ay = eAx* - AxAy 
(3.5) 

We will neglect the non-linear terms and write the characteristic equation of the linear system 

9h2+A(xo,yo)h+B(xo,yo) = 0 (3.6) 

where 

A(x, y) = Z + 1 +e2+y-ex+2ye, B(x,y) = 1 +y+2x2-y’+yx (3.7) 

The straight line and parabola (3.7) isolate corresponding regions in the x, y plane. Since E > 0, if 
the stationary point is in the domain A > 0, B > 0, it is stable, and if it is in the domain B < 0, it is a 
saddle. 

The characteristic equation (3.6) has real roots when 

C = A2-4EB20 (3.8) 

In the opposite case the roots are complex. Consequently, the curve C(x,y) = 0 divides the phase plane 
into domains, in one of which the stationary points are nodes and saddles, and in the other they are 
foci. Substituting Eqs (3.7) into condition (3.8) for A and B we have the following expression for this 
curve 

C = (y-ex+ 1-$+e2+2yef-89(x+f$J~+~E(e+y)2 = 0 

It is obvious that curve (3.9) is a hyperbola and that its branches are positioned outside the range of 
values for x determined by the inequality 

[2x - (e + y)l[x + (e + y)l < 0 

It is easy to show that this hyperbola touches the parabola B&y) = 0 at the points of intersection of 
the latter with the straight lineA(x,y) = 0. When e + y = 0 hyperbola transforms into a pair of straight 
lines, intersecting at the point x = 0, y = -1 + Z - e2. 

Figure 4 shows the position of the curvesA = 0, B = 0 (3.7) and C = 0 (3.9) in thex,y plane for the 
following values of the parameters: E = 1.0, y = 0.2, e = 0.3. The functions A and B are positive above 
the respective curves and the function C is positive between the branches of the hyperbola. Graphical 
symbols of the singular-point type in different regions of obvious meaning are also given there. 

The technical difficulty of an analytical investigation of the character of stationary points of system 
(3.2), depending on the values of its parameters and controls p and q, as due to the fact that the 
coordinates of these points are calculated as the roots of a cubic equation, while coefficients (3.7) of 



The motion of wheeled robots 221 

the characteristic equation, the signs of which determine the stability, are obtained as functions of the 
coordinates. To avoid this difficulty we will introduce the coordinatesxa, ye of one stationary point; then 
p and q are determined from system (3.3), and the coordinates of the two other points, if they exist, 
are obtained by solving a quadric equation, after which it is possible to obtain explicit expressions A 
and B and analytically investigate the stability of all stationary solutions. 

Suppose x0, y. are the coordinates of a certain stationary point. Then the corresponding controls 

PO = -x~+Yo+Yxo~ 90 = Xo(Yo’l)+YY, (3.10) 

are obtained from system (3.3), and the cubic equation, equivalent to system (3.3), obtained by 
substitution of (3.10), is written in the form 

(x-xo)(x2+xox+yo+ l-y2+yxo) = 0 (3.11) 

If 

Gh,, YO) = -X~+4(yo+1-y2+yXo)>o (3.12) 

then the stationary point is unique, otherwise there are two additional stationary points. 
The curve G = 0 is shown in Fig. 4 for the above-mentioned values of the parameter. The function 

G is positive above the corresponding curve. Since Z > 0 it can be shown that the straight line A = 0 
is always situated below the parabola G = 0. It is also easy to determine that the parabolas B = 0 and 
G = 0 always have a unique common point x = 0, y = -1 + + at which they have a common tangent. 

Consequently, if a stationary point x0, y. is introduced into the domain G > 0, then this point will be 
unique,A > 0, B > 0 for it and, hence, it is stable in the small. Additionally in this case stability occurs 
in the large. 

We will consider the exact non-linear equations (3.5) and construct the Lyapunov function (its specific form 
was suggested by V. M. Morosov) 

L = ;[BAx~+(A~-~Ax)~] 

the derivative of which, by virtue of Eq. (3.9, has the form 

(3.13) 

Fig. 4 
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dLldz = -[( 1 + yo)An2 + (--x, + 2y)AxAy + Ay*] (3.14) 

The function (3.13) is positive-definite and its derivative (3.14) has the opposite sign, if the condition 

1 + yo-( no - 2y)‘/4 > 0 

which is identical with condition G > 0 (3.12) for the stationary point to be unique, is satisfied. Hence the unique 
stationary point is stable in the large over the whole phase plane. 

Suppose now that the stationary point x0, y. lies in the domain G < 0. Then apart from this point 
the system has another two stationary points. We will examine their position and stability, for which it 
is convenient to introduce a special parameterization. We will construct a parabola 

y = $1 4)X2-YX- 1 +y2 (3.15) 

passing through the point x = 0,y = -1 + p, common for B = 0, G = 0 and having the same tangent. 
It is obvious that for h = 0 it coincides with G = 0 when h = 3 - c B = 0. Obviously, when -, < x0 -Z 
00, 0 c h < 3 we have the domain G < 0, B > 0, and when --oo < x0 c m, 3 c h < m we have the 
domain G < 0, B < 0. We will now specify a stationary point with parameter h > 0 and coordinate x0, 
determiningyo from Eq. (3.15). 

The,quadratic equation, produced by the multiplier in (3.11), for the coordinates x1, 2 of the other 
two stationary points has, in terms of these parameters, the roots 

X1,2 = X,/2(-1 f h) (3.16) 

me coordinates yI, 2 corresponding to them are determined from Eq. (3.10) 

p. = -x;+yo+yxo = -x;+y,+yx, = -$+Y2+Y$ (3.17) 

and are expressed in terms of x0 and h as follows: 

Yl, 2 = -$(I kh)+$lrh)- 1 +y* (3.18) 

We will now obtain B(xo, yo), B(xl, yl) and B(x2, yz), from Eq. (3.). Their expressions in terms of x0 
and h have the following simple form 

2 

Kqp Yo) = $(9-h*), B(x,,y1) = TM-3 +h) 

2 n 
&x27 Y2) = 9(3 + h) 

(3.19) 

It is obvious, that for arbitraryxo and h > 0 one of the points is in the domain B < 0 and two points 
are outside this domain. Without loss of generality, we will further assume that 0 < h c 3, thereby 
specifying the initial stationary point in the domain G < 0, B > 0. Then B(xo, yo) > 0, B(xl, yl) < 0, 
B(x2, y2) > 0; consequently, the stationary point x1, y1 is a saddle. 

We will now investigate the functions A(xo, yo), A(x,, yl) and -4(x,, y2). From relations (3.7), (3.15), 
(3.16) and (3.18) we can obtain 

A(+,, YO) = (+xo)(E-!+o)+z 

A(x,,y,) = (&+x0) 
> +z (3.20) 

A(x2,y2) = (E+x~)(E+x~)+~; E = y+e 
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Considering the signs of the factors in the expressions for &.x0, ys) and A&, y2) (it is not necessary 
to investigate A&i, yi)) it can be established that for any x0, E and 0 < h < 3 one of these products will 
be positive and the other negative. Since E > 0, then either both functions A(xo, yo) and A&, yz) are 
positive or one of them is. Consequently, either both stationary points (x0, ya) and (~2, yZ) are stable or 
one of them is. 

We will consider separately the case when the point x0, y. lies on the straight line A = E,. It can be 
seen from Eqs (3.20) that one other point x2, yZ for x0 > 2s or xl,yl for x0 < 2~ lies on the same straight 
line. Here we assume that E = e + y > 0, which corresponds to Fig. 4. On the other hand, in the case 
consideredyo = exe - 1 -e* - 2ye, in accordance with expressions (3.7). Taking this relation into account 
we can write expressions (3.10) for p”, q and determine that the straight line x = -c is the solution of 
the dynamic equations (3.2) and that a third singular point is positioned on it. For x0 < 2s the straight 
line x = -E passes through the stable singular point (node) x2, ~2, and the saddle point x1, yl lies on the 
straight line A = Z Both points merge for-x0 = 2~. For x0 > 2~ the stable point x2,y2 lies on the straight 
line A = 5 and the saddle point xl,yl belongs to the straight linex = -E, which is a vertical separatrix 
dividing the domains of attraction of two stable singular points. Note that in the symmetrical case 
e = y = 0 only the last version is realized. 

Thus, the non-holonomic mechanical system considered can have either one or three stationary 
points; the unique stationary point is stable, and stable in the large; if there are three stationary points, 
then one of them is a saddle point and the other two are nodes or foci, and at least one of them is 
stable. 

4. PHASE TRAJECTORIES 

The phase portrait of the system is also generally clear after the number, position and character of the 
stationary points of the system have been investigated. We will cite here (Fig. 5) typical positions of 
phase trajectories for the same parameter values Z = 1.0, y = 0.2, e = 0.3 as previously for the change 
in position of the specified stationary point. Thus, the qualitative characteristics to not depend on the 
choice of the particular parameters of the mechanical system. The choice of the stationary point in the 
half-planesy > 0 corresponds to positive linear velocities, when the centre of gravity is shifted forward 
relative to the axis of the wheels in the direction of motion. The characteristic lines are shown by the 
dashed line in Fig. 4. 

In Fig. 5(a) the stationary point is chosen in the domain G > 0 and, hence, is unique and stable in 
the large. Changes in the phase plane occur when this point is shifted downwards. These are shown in 
Fig. 5(b-h). A deformation of the phase trajectories occurs (Fig. 5b) on approaching the’boundary 
G = 0 of the domain of uniqueness of the stationary point, and if the stationary point falls on the 
boundary G = 0 (Fig. 5c) a new multiple stationary point develops on the curve B = 0. Furthermore, 
this multiple singular point splits into two, one of them remains a saddle points and the seconds is initially 
an unstable node and then an unstable focus (Fig. 5d). 

When the left focus moves further downward, the right, unstable focus shifts upwards, and on 
intersecting the straight line A = 0 transforms into a centre and further on into a stable focus. In addition, 
an unstable limiting cycle (Fig. 5e) appears around it. The limiting cycle increases in size and at a certain 
instant the two separatrices of the saddle point are closed in it (Fig. 5f), after which it disappears and 
the domain of attraction of the right focus becomes unbounded (Fig. 5g) along the lower separatrix of 
the saddle. Further, when the left focus moves downward, its domain of attraction decreases due to 
the right focus and when it falls on the straight lineA = Z the second focus also appears on this straight 
line. In this case, the domains of attraction are half-planes, divided by the vertical straight line 
x = -E = -(e, y), on which the saddle point is situated (Fig. 5h). 

The further changes occur in reverse order: the domain of attraction of the left focus decreases, around 
it an unstable limiting cycle develops, etc. 

The evolution described applies to the case when the multiple singular point develops in the domain 
A < 0 and breaks down into an unstable node and a saddle. If the multiple point appears in the domain 
A > 0, it breaks down into a stable node and a saddle, and the domain of attraction of the node 
immediately becomes unbounded. 

Note the following feature of the system. In the case of two stable stationary movies (Fig. 5e-g), they 
are realized for the same control and a change from one mode to the other by a single change of control 
becomes impossible. 
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(e) 

Fig. 5 

(b) 

(4 

(h) 

5. CONCLUSION 

1. If the vector of the given linear velocity of the robot is in the same direction as the shift in the centre 
of gravity of the robot relative to the axis of the drive wheels, then for the appropriate constant controls 
the motion of the robot is stable. In the opposite case the stability of the specified motion is conserved 
only for considerable limits on the magnitude of the linear and angular velocities. A breach of these 



m

limits leads to the specified motion being unstable and the robot reaches a stable type of motion different 
from the specified one. Of course if the wheels of the robot are equipped with sensors of their singular 
velocities, then, using the readings of these sensors, it is possible to form the control signal, stabilizing 
any motion, but it is obvious that the costs of stabilizing naturally stable motion are considerably less 
than for unstable motion. 

2. Apart from the multiplicity of stationary solutions for constant controls in the system, the existence 
of singular solutions, such as unstable limiting cycles, is possible. 

3. Using the relations and graphs obtained it is easy to interpret the influence of asymmetry related 
to the position of the centre of gravity and the different parameters of the motors. But it should be 
noted that asymmetry does not lead to any qualitative change in the behaviour of the system. 
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